





# Principles of CHEMISTRY -I GRADE XI



Prof. Dr. Mohan B. Gewali Ramesh Silwal Dr. Rishi Tiwari Dr. Sitaram Acharya Chiranjibi Ghimire

Approved by Government of Nepal, Ministry of Education, Science & Technology, Curriculum Development Centre, Bhaktapur, as an Additional Material from 2077 to 2079



### Chemistry

### GENERAL AND PHYSICAL CHEMISTRY

### 1. Foundation and Fundamentals

2

8

8

5

- General introduction of chemistry
  Importance and scope of chemistry
- 1.3 Basic concepts of chemistry (atoms, molecules, relative masses of atoms and molecules, atomic mass unit ( amu), radicals, molecular formula, empirical formula )
- 1.4 Percentage composition from molecular formula

### 2. Stoichiometry

- 2.1 Dalton's atomic theory and its postulates
- 2.2 Laws of stoichiometry
- 2.3 Avogadro's law and some deductions
  - 2.3.1 Molecular mass and vapour density
  - 2.3.2 Molecular mass and volume of gas
  - 2.3.3 Molecular mass and no. of particles
- 2.4 Mole and its relation with mass, volume and number of particles
- 2.5 Calculations based on mole concept
- 2.6 Limiting reactant and excess reactant
- 2.7 Theoretical yield, experimental yield and % yield
- 2.8 Calculation of empirical and molecular formula from % composition (Solving related numerical problems)

#### 3. Atomic Structure

- 3.1 Rutherford's atomic model
- 3.2 Limitations of Rutherford's atomic model
- 3.3 Postulates of Bohr's atomic model and its application
- 3.4 Spectrum of hydrogen atom
- 3.5 Defects of Bohr's theory
- 3.6 Elementary idea of quantum mechanical model: de Broglie's wave equation
- 3.7 Heisenberg's Uncertainty Principle
- 3.8 Concept of probability
- 3.9 Quantum Numbers
- 3.10 Orbitals and shape of s and p orbitals only
- 3.11 Aufbau Principle
- 3.12 Pauli's exclusion principle
- 3.13 Hund's rule and electronic configurations of atoms and ions (up to atomic no. 30)
- 4. Classification of Elements and Periodic Table
- 4.1 Modern periodic law and modern periodic table4.1.1 Classification of elements into different groups, periods and blocks
- 4.2 IUPAC classification of elements
- 4.3 Nuclear charge and effective nuclear charge
- 4.4 Periodic trend and periodicity

- 4.4.1 Atomic radii
- 4.4.2 Ionic radii
- 4.4.3 Ionization energy
- 4.4.4 Electron affinity
- 4.4.5 Electronegativity
- 4.4.6 Metallic characters (General trend and explanation only)
- 5. Chemical Bonding and Shapes of Molecules
- 5.1 Valence shell, valence electron and octet theory
- 5.2 Ionic bond and its properties
- 5.3 Covalent bond and coordinate covalent bond
- 5.4 Properties of covalent compounds
- 5.5 Lewis dot structure of some common compounds of s and p block elements
- 5.6 Resonance
- 5.7 VSEPR theory and shapes of some simple molecules (BeF<sub>2</sub>, BF<sub>3</sub>, CH<sub>4</sub>, CH<sub>3</sub>Cl, PCl<sub>5</sub>, SF<sub>6</sub>, H<sub>2</sub>O,NH<sub>3</sub>,CO<sub>2</sub>,H<sub>2</sub>S, PH<sub>3</sub>)
- 5.8 Elementary idea of Valence Bond Theory
- 5.9 Hybridization involving s and p orbitals only
- 5.10 Bond characteristics:
  - 5.10.1 Bond length
  - 5.10.2 Ionic character
  - 5.10.3 Dipole moment
- 5.11 Vander Waal's force and molecular solids
- 5.12 Hydrogen bonding and its application
- 5.13 Metallic bonding and properties of metallic solids
- 6. Oxidation and Reduction
- 6.1 General and electronic concept of oxidation and reduction
- 6.2 Oxidation number and rules for assigning oxidation number
- 6.3 Balancing redox reactions by oxidation number and ion-electron (half reaction) method
- 6.4 Electrolysis
  - 6.4.1 Qualitative aspect
  - 6.4.2 Quantitative aspect(Faradays laws of electrolysis)
- 7. States of Matter
- 7.1 Gaseous state
  - 7.1.1 Kinetic theory of gas and its postulates
  - 7.1.2 Gas laws
  - 7.1.2.1 Boyle's law and Charles' law
  - 7.1.2.2 Avogadro's law

8

5

- 7.1.2.3 Combined gas equation
- 7.1.2.4 Dalton's law of partial pressure
- 7.1.2.5 Graham's law of diffusion
- 7.1.3 Ideal gas and ideal gas equation
- 7.1.4 Universal gas constant and its significance
- 7.1.5 Deviation of real gas from ideality (Solving related numerical problems based on gas laws)
- 7.2 Liquid state
  - 7.2.1 Physical properties of liquids
  - 7.2.1.1 Evaporation and condensation
  - 7.2.1.2 Vapour pressure and boiling point
  - 7.2.1.3 Surface tension and viscosity (qualitative idea only)
  - 7.2.2 Liquid crystals and their applications
- 7.3 Solid state

- 7.3.1 Types of solids
- 7.3.2 Amorphous and crystalline solids
- 7.3.3 Efflorescent, Deliguescent and Hygroscopic solids
- 7.3.4 Crystallization and crystal growth
- 7.3.5 Water of crystallization
- 7.3.6 Introduction to unit crystal lattice and unit cell

#### 8. **Chemical Equilibrium**

- 8.1 Physical and chemical equilibrium
- 8.2 Dynamic nature of chemical equilibrium
- 8.3 Law of mass action
- 8.4 Expression for equilibrium constant and its importance
- 8.5 Relationship between Kp and Kc
- Le Chatelier's Principle (Numericals not required) 8.6

### **INORGANIC CHEMISTRY**

4

- 9. Chemistry of Non-metals
- 9.1 Hydrogen
  - 9.1.1 Chemistry of atomic and nascent hydrogen
  - 9.1.2 Isotopes of hydrogen and their uses
  - 9.1.3 Application of hydrogen as fuel
  - 9.1.4 Heavy water and its applications
- 9.2 Allotropes of Oxygen
  - 9.2.1 Definition of allotropy and examples
  - 9.2.2 Oxygen: Types of oxides (acidic, basic, neutral, amphoteric, peroxide and mixed oxides)
  - 9.2.3 Applications of hydrogen peroxide
  - 9.2.4 Medical and industrial application of oxygen
- 9.3 Ozone
  - 9.3.1 Occurrence
  - 9.3.2 Preparation of ozone from oxygen
  - 9.3.3 Structure of ozone
  - 9.3.4 Test for ozone
  - 9.3.5 Ozone layer depletion (causes, effects and control measures)
  - 9.3.6 Uses of ozone
- 9.4 Nitrogen
  - 9.4.1 Reason for inertness of nitrogen and active nitrogen
  - 9.4.2 Chemical properties of ammonia [Action with CuSO<sub>4</sub> solution, water, FeCl<sub>3</sub> solution, Conc. HCl, Mercurous nitrate paper, O<sub>2</sub>]
  - 9.4.3 Applications of ammonia
  - 9.4.4 Harmful effects of ammonia
  - 9.4.5 Oxy-acids of nitrogen (name and formula)
  - 9.4.6 Chemical properties of nitric acid [HNO<sub>2</sub> as an acid and oxidizing agent (action with zinc, magnesium, iron, copper, sulphur, carbon, SO<sub>2</sub> and H<sub>2</sub>S)
  - 9.4.7 Ring test for nitrate ion
- 9.5 Halogens
  - 9.5.1 General characteristics of halogens
  - 9.5.2 Comparative study on preparation (no diagram and description is required),

- 9.5.2.1 Chemical properties [with water, alkali, ammonia, oxidizing character, bleaching action] and uses of halogens (Cl<sub>2</sub>, Br<sub>2</sub> and I<sub>2</sub>)
- 9.5.3 Test for Cl<sub>2</sub>, Br<sub>2</sub> and I<sub>2</sub>
- 9.5.4 Comparative study on preparation (no diagram and description is required), properties (reducing strength, acidic nature and solubility) and uses of haloacids (HCl, HBr and HI)
- 9.6 Carbon
  - 9.6.1 Allotropes of carbon (crystalline and amorphous) including fullerenes (structure, general properties and uses only)
  - 9.6.2 Properties (reducing action, reaction with metals and nonmetals) and uses of carbon monoxide
- 9.7 Phosphorus
  - 9.7.1 Allotropes of phosphorus (name only)
  - 9.7.2 Preparation (no diagram and description is required), properties (basic nature, reducing nature, action with halogens and oxygen) and uses of phosphine
- 9.8 Sulphur

8

3

- 9.8.1 Allotropes of sulphur (name only) and uses of sulphur
- 9.8.2 Hydrogen sulphide (preparation from Kipp's apparatus with diagram,) properties (Acidic nature, reducing nature, analytical reagent) and uses
- 9.8.3 Sulphur dioxide its properties (acidic nature, reducing nature, oxidising nature and bleaching action) and uses
- 9.8.4 Sulphuric acid and its properties (acidic nature, oxidising nature, dehydrating nature) and uses
- 9.8.5 Sodium thiosulphate (formula and uses)

### 10. Chemistry of Metal

- 10.1 Metals and Metallurgical Principles
  - 10.1.1 Definition of metallurgy and its types (hydrometallurgy, pyrometallurgy, electrometallurgy)

5

- 5

- 10.1.2 Introduction of ores
- 10.1.3 Gangue or matrix, flux and slag, alloy and amalgam
- 10.1.4 General principles of extraction of metals (different processes involved in metallurgy) – concentration, calcination and roasting, smelting, carbon reduction, thermite and electrochemical reduction
- 10.1.5 Refining of metals (poling and electrorefinement)
- 10.2 Alkali Metals

10.2.1 General characteristics of alkali metals

- 10.2.2 Sodium [extraction from Down's process, properties (action with Oxygen, water, acids nonmetals and ammonia) and uses]
- 10.2.3 Properties (precipitation reaction and action with carbon monooxide) and uses of sodium hydroxide
- 10.2.4 Properties (action with CO<sub>2</sub>, SO<sub>2</sub>, water, precipitation reactions) and uses of sodium carbonate

- 10.3 Alkaline Earth Metals
  - 10.3.1 General characteristics of alkaline earth metals
  - 10.3.2 Molecular formula and uses of (quick lime, bleaching powder, magnesia, plaster of paris and epsom salt)
  - 10.3.3 Solubility of hydroxides, carbonates and sulphates of alkaline earth metals (general trend with explanation)
  - 10.3.4 Stability of carbonate and nitrate of alkaline earth metals (general trend with explanation)

### 11. Bio-inorganic Chemistry

- 11.1 Introduction
- 11.2 Micro and macro nutrients
- 11.3 Importance of metal ions in biological systems (ions of Na, K, Mg, Ca, Fe, Cu, Zn, Ni, Co, Cr)
- 11.4 on pumps (sodium-potassium and sodium-glucose pump)
- 11.5 Metal toxicity (toxicity due to iron, arsenic, mercury, lead and cadmium)

### ORGANIC CHEMISTRY

6

5

### 12. Basic Concept of Organic Chemistry

- 12.1 Introduction to organic chemistry and organic compounds
- 12.2 Reasons for the separate study of organic compounds from inorganic compounds
- 12.3 Tetra-covalency and catenation properties of carbon
- 12.4 Classification of organic compounds
- 12.5 Alkyl groups, functional groups and homologous series
- 12.6 Idea of structural formula, contracted formula and bond line structural formula
- 12.7 Preliminary idea of cracking and reforming, quality of gasoline, octane number, cetane number and gasoline additive
- 13. Fundamental Principles of Organic Chemistry 10
- 13.1 IUPAC Nomenclature of Organic Compounds (upto chain having 6-carbon atoms)
- 13.2 Qualitative analysis of organic compounds (detection of N, S and halogens by Lassaigne's test)
- 13.3 Isomerism in Organic Compounds
- 13.4 Definition and classification of isomerism
- 13.5 Structural isomerism and its types: chain isomerism, position isomerism, functional isomerism, metamerism and tautomerism
- 13.6 Concept of geometrical isomerism (cis & trans) & optical isomerism (d & I form)
- 13.7 Preliminary Idea of Reaction 13.7.2 Electrophiles, nucleophiles and free- radicals
- 13.7.3 Inductive effect: +I and -I effect
- 13.7.4 Resonance effect: +R and -R effect Mechanism
- 13.7.1 Homolytic and heterolytic fission

### 14. Hydrocarbons

- 14.1 Saturated Hydrocarbons (Alkanes)
  - 14.1.1 Alkanes: Preparation from haloalkanes (Reduction and Wurtz reaction), Decarboxylation, Catalytic hydrogenation of alkene and alkyne
  - 14.1.2 Chemical properties: Substitution reactions (halogenation, nitration & sulphonation only), oxidation of ethane
- 14.2 Unsaturated hydrocarbons (Alkenes & Alkynes)
  - 14.2.1 Alkenes: Preparation by Dehydration of alcohol, Dehydrohalogenation, Catalytic hydrogenation of alkyne
  - 14.2.1.1 Chemical properties: Addition reaction with HX (Markovnikov's addition and peroxide effect), H<sub>2</sub>O, O<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub> only
- 14.3 Alkynes: Preparation from carbon and hydrogen, 1,2 dibromoethane, chloroform/iodoform only
  - 14.3.1 Chemical properties: Addition reaction with (H<sub>2</sub>, HX, H<sub>2</sub>O), Acidic nature (action with Sodium, ammoniacal AgNO<sub>3</sub> and preparation of alkane, alkene and alkynes ammoniacal Cu<sub>2</sub>Cl<sub>2</sub>)
- 14.4 Test of unsaturation (ethene & ethyne): bromine water test and Baeyer's test
- 14.5 Comparative studies of physical properties of alkane, alkene and alkyne
- 14.6 Kolbe's electrolysis methods for the preparation of alkane, alkene and alkynes
- 15. Aromatic Hydrocarbons
- 15.1 Introduction and characteristics of aromatic compounds

6

3

- 15.2 Huckel's rule of aromaticity
- 15.3 Kekule structure of benzene
- 15.4 Resonance and isomerism
- 15.5 Preparation of benzene from decarboxylation of sodium benzoate, phenol, and ethyne only
- 15.6 Physical properties of benzene
- 15.7 Chemical properties of benzene: Addition reaction:

hydrogen, halogen, Electrophilic substitution reactions: orientation of benzene derivatives (o, m & p), nitration, sulphonation, halogenations, Friedal-Craft's reaction (alkylation and acylation), combustion of benzene (free combustion only) and uses

### APPLIED CHEMISTRY

4

### 16. Fundamentals of Applied Chemistry

- 16.1 Fundamentals of Applied Chemistry
- 16.1.2 Chemical industry and its importance
- 16.1.3 Stages in producing a new product
- 16.1.4 Economics of production
- 16.1.5 Cash flow in the production cycle
- 16.1.6 Running a chemical plant
- 16.1.7 Designing a chemical plant
- 16.1.7 Continuous and batch processing
- 16.1.8 Environmental impact of the chemical industry

### 17. Fundamentals of Applied Chemistry

17.1 Modern Chemical Manufactures (principle and flow sheet diagram only)

- 17.1.1 Manufacture of ammonia by Haber's process,
- 17.1.2 Manufacture of nitric acid by Ostwald's process,
- 17.1.3 Manufacture of sulphuric acid by contact process,
- 17.1.4 Manufacture of sodium hydroxide by Diaphragm Cell
- 17.1.5 Manufacture of sodium carbonate by ammonia soda or Solvay process
- 17.2 Fertilizers (Chemical fertilizers, types of chemical fertilizers, production of urea with flow-sheet diagram)



# **GENERAL AND PHYSICAL CHEMISTRY**

# **CHAPTER 1** FOUNDATION OF FUNDAMENTALS

| 1.1 | General Introduction of Chemistry    | 2 |
|-----|--------------------------------------|---|
|     | ,                                    | 2 |
| 1.2 | Importance and Scope of Chemistry    | 3 |
| 1.3 | Basic Concept of Chemistry           | 5 |
|     | 1.3.1 Pure and Impure Substances and |   |
|     | Chemical Changes                     | 5 |
|     | 1.3.2 Classification of Substances   | 5 |
|     | 1.3.3 Classification of Substances   | 6 |
|     | 1.3.4 Elements                       | 6 |
|     | 1.3.5 Atoms                          | 7 |
|     | 1.3.6 Compounds                      | 7 |
|     | 1.3.7 Molecules                      | 8 |
|     | 1.3.8 Symbols and Formulae           | 8 |

|      | 1.3.9 Valency                              | 11 |
|------|--------------------------------------------|----|
|      | 1.3.10 Radicals/Ions                       | 12 |
|      | 1.3.11 Chemical Formula                    | 14 |
|      | 1.3.12 Empirical Formula                   | 17 |
|      | 1.3.13 Chemical Equation: Significance and | ł  |
|      | Limitation                                 | 17 |
|      | 1.3.14 Balancing Chemical Equations        | 21 |
|      | 1.3.15 Types of Chemical Reactions         | 23 |
|      | 1.3.16 Atomic Mass and Molecular Mass      | 25 |
| 1.4  | Determination of Percentage Composition    | 29 |
| Que  | stions for Practice                        | 31 |
| Proj | ect Work                                   | 34 |

# **CHAPTER 2 STOICHIOMETRY**

| 2.1 | Dalton's Atomic Theory              | 36 |
|-----|-------------------------------------|----|
| 2.2 | Laws of Stoichiometry               | 36 |
|     | 2.2.1 Law of Conservation of Mass   | 37 |
|     | 2.2.2 Law of Constant Composition   | 38 |
|     | 2.2.3 Law of Multiple Proportions   | 40 |
|     | 2.2.4 Law of Reciprocal Proportions | 42 |
|     | 2.2.5 Gay-Lussac's Law of Gaseous   |    |
|     | Volumes                             | 44 |
| 2.3 | Avogadro's Hypothesis               | 45 |
| 2.4 | Concept of Mole                     | 51 |
|     | 2.4.1 What is Mole?                 | 51 |
|     | 2.4.2 Mole in Terms of Gram         | 51 |

|       | 2.4.3 Mole in Terms of Volume             | 52 |
|-------|-------------------------------------------|----|
| 2.5   | Stoichiometric Calculations Based on Mole |    |
|       | Concept                                   | 55 |
|       | 2.5.1 Mass and Mass Relationship          | 56 |
|       | 2.5.2 Mass and Volume Relationship        | 56 |
|       | 2.5.3 Volume and Volume Relationship      | 57 |
| 2.6   | Concept of Limiting Reactants             | 58 |
| 2.7   | Calculation of Percentage Yield           | 60 |
| 2.8   | Determination of Empirical and Molecular  |    |
|       | Formula                                   | 60 |
| Que   | stions for Practice                       | 64 |
| Proje | ect Work                                  | 70 |

# **CHAPTER 3** ATOMIC STRUCTURE

| 3.1 | Introduction                     | 72 | 3.2.1 Evidence for the Electrical Nature of |    |
|-----|----------------------------------|----|---------------------------------------------|----|
| 3.2 | Fundamental Particles of an Atom | 72 | Atoms                                       | 72 |

|     | 3.2.2 Discovery of Electrons                                          | 72 |
|-----|-----------------------------------------------------------------------|----|
|     | 3.2.3 Charge and Mass of an Electron                                  | 73 |
|     | 3.2.4 Discovery of Proton                                             | 74 |
|     | 3.2.5 The Charge and Mass of the Particles                            |    |
|     | Constituting Anode Rays                                               | 75 |
|     | 3.2.6 Discovery of Neutrons                                           | 76 |
|     | 3.2.7 Concept of Atomic Number and Mass                               |    |
|     | Number                                                                | 76 |
|     | 3.2.8 Isotopes                                                        | 77 |
|     | 3.2.9 Isobars                                                         | 78 |
| 3.3 | Thomson's Atomic Model                                                | 78 |
| 3.4 | Rutherford's Atomic Model                                             | 79 |
|     | 3.4.1 Alpha Rays Scattering Experiment                                | 79 |
|     | 3.4.2 Observations                                                    | 79 |
|     | 3.4.3 Conclusions                                                     | 80 |
|     | 3.4.4 Shortcomings of Rutherford's Atomic                             |    |
|     | Model                                                                 | 81 |
| 3.5 | Bohr's Atomic Model                                                   | 82 |
|     | 3.5.1 Absorption and Emission Spectra                                 | 83 |
|     | 3.5.3 Interpretation of Hydrogen Spectra in<br>Light of Bohr's Theory | 84 |
|     | 3.5.4 Limitations of Bohr's Theory                                    | 86 |
|     |                                                                       |    |

| 3.6  | Elementary Idea of Wave Mechanical<br>Model of an Atom | 87  |
|------|--------------------------------------------------------|-----|
|      | 3.6.1 Dual Nature of an Electron:                      |     |
|      | de Broglie's Equation                                  | 87  |
|      | 3.6.2 de Broglie's Equation                            | 87  |
|      | 3.6.3 Bohr's Theory versus de Broglie's<br>Concept     | 88  |
|      | 3.6.4 Heisenberg's Uncertainty Principle               | 89  |
|      | 3.6.5 Probability Concept                              | 91  |
| 3.7  | Atomic Orbital                                         | 92  |
|      | 3.7.1 Shapes of Orbitals                               | 92  |
| 3.8  | Quantum Numbers                                        | 94  |
|      | 3.8.1 Principal Quantum Number (n)                     | 95  |
|      | 3.8.2 Azimuthal Quantum Number (I)                     | 95  |
|      | 3.8.3 Magnetic Quantum Number (ml)                     | 96  |
|      | 3.8.4 Spin Quantum Number(ms)                          | 97  |
| 3.9  | Pauli's Exclusion Principle                            | 99  |
| 3.10 | Hund's Rule                                            | 100 |
|      | 3.10.1 Significance of Hund's Rule                     | 101 |
| 3.11 | Aufbau Principle                                       | 101 |
| 3.12 | Electronic Configuration                               | 102 |
| Que  | stions for Practice                                    | 106 |
| Proj | ect Work                                               | 109 |
|      |                                                        |     |

# CHAPTER 4 CLASSIFICATION OF ELEMENTS AND PERIODIC TABLE

| 4.1 | Introduction                                                | 111      |
|-----|-------------------------------------------------------------|----------|
| 4.2 | Mendeleev's Periodic Table                                  | 111      |
|     | 4.2.1 Description                                           | 113      |
|     | 4.2.2 Zero Group Elements                                   | 113      |
|     | 4.2.3 Contributions of Mendeleev's<br>Periodic Table        | 113      |
|     | 4.2.4 Shortcomings of Mendeleev's                           |          |
|     | Periodic Table                                              | 114      |
| 4.3 | Modern Periodic Law                                         | 114      |
|     | 4.3.1 Cause of Periodicity                                  | 115      |
|     | 4.3.2 Description of the Modern<br>Periodic Table           | 115      |
|     | 4.3.3 Advantages of the Modern<br>Periodic Table            | 116      |
|     | 4.3.4 Classification of Elements into s, p,<br>and f-Blocks | d<br>117 |
|     | 4.3.5 Latest IUPAC Classification of<br>Elements            | 118      |
|     |                                                             |          |

|                        | 4.3.6 Trivial Name of a Specific Group                          | 119 |
|------------------------|-----------------------------------------------------------------|-----|
|                        | 4.3.7 Classification of Elements Based on<br>Certain Properties | 120 |
| 4.4                    | Nuclear Charge and Effective Nuclear<br>Charge                  | 121 |
|                        | 4.4.1 Shielding Effect (Screening Effect)                       | 122 |
|                        | 4.4.2 Factor Affecting Effective Nuclear<br>Charge              | 122 |
| 4.5                    | Important Properties and their Periodic Trends                  | 123 |
|                        | 4.5.1 Atomic Radii                                              | 123 |
|                        | 4.5.2 Ionization Energy                                         | 126 |
|                        | 4.5.3 Electron Affinity                                         | 129 |
|                        | 4.5.4 Electronegativity                                         | 131 |
|                        | 4.5.5 Metallic Character                                        | 133 |
|                        | 4.5.6 Diagonal Relationship                                     | 134 |
| Questions for Practice |                                                                 | 134 |
| Proje                  | ect Work                                                        | 136 |
|                        |                                                                 |     |

# CHAPTER 5 CHEMICAL BONDING AND SHAPES OF MOLECULES

| 5.1 | Electronic Theory of Valency          | 138 |
|-----|---------------------------------------|-----|
| 5.2 | Chemical Bond and Lewis Structure     | 139 |
| 5.3 | Covalent Bond                         | 141 |
| 5.4 | Properties of Covalent Compounds      | 143 |
| 5.5 | Coordinate Covalent Bond              | 145 |
| 5.6 | Resonance                             | 147 |
| 5.7 | Valence Shell Electron Pair Repulsion |     |
|     | VSEPR) Theory                         | 150 |
| 5.8 | Valence Bond Theory                   | 153 |
| 5.9 | Concept of Hybridization              | 158 |
|     |                                       |     |

| 5.10 Ionic Character of Covalent Bonds        | 167 |
|-----------------------------------------------|-----|
| 5.11 Bond Length                              | 172 |
| 5.12 Intermolecular Bonding in Molecular      |     |
| Solids                                        | 173 |
| 5.13 Hydrogen Bonding                         | 174 |
| 5.14 Metallic Bond                            | 177 |
| 5.15 Bonding in Sodium Chloride (Ionic Solid) | 178 |
| Questions for Practice                        | 179 |
| Project Work                                  | 184 |
|                                               |     |

# CHAPTER 6 OXIDATION AND REDUCTION

| 6.1 | Classical Concept of Oxidation and Reduction | 186 |
|-----|----------------------------------------------|-----|
| 6.2 | Electronic Concept of Oxidation and          |     |
|     | Reduction                                    | 186 |
| 6.3 | Oxidation Number and Its Assignment          | 188 |
| 6.4 | Redox Reaction                               | 190 |
| 6.5 | Balancing a Redox Reaction                   | 191 |

| 6.6 Electrolysis and Redox Reaction |                                           |     |
|-------------------------------------|-------------------------------------------|-----|
| 6.7                                 | 6.7 Electrolytic Cell and Electrolytes    |     |
|                                     | 6.7.1 Qualitative Aspect of Electrolysis  | 201 |
|                                     | 6.7.2 Quantitative Aspect of Electrolysis | 202 |
| Questions for Practice              |                                           | 206 |
| Project Work                        |                                           | 210 |

# CHAPTER 7 STATES OF MATTER

| 7.1 Gaseous State                                                  | 212 |
|--------------------------------------------------------------------|-----|
| 7.1.1 Postulates of Kinetic Theory of Gas                          | 212 |
| 7.1.2 Gas Laws                                                     | 213 |
| 7.1.3 Deviation of a Gas from Ideal<br>Behaviour and van der Waals |     |
| Equation                                                           | 230 |
| 7.2 Liquid State of Matter                                         | 232 |
| 7.2.1 Properties of Liquids                                        | 232 |
| 7.2.2 Liquid Crystal                                               | 236 |
| 7.3 Solid State of Matter                                          | 237 |
| 7.3.1 Introduction                                                 | 237 |

| 7.3.2 Classification of Solids      | 238 |
|-------------------------------------|-----|
| 7.3.3 Crystal Lattice and Unit Cell | 240 |
| 7.3.4 Seven Types of Crystal System | 240 |
| 7.3.5 Water of Crystallization      | 243 |
| 7.3.6 Polymorphism and Isomorphism  | 244 |
| 7.3.7 Fractional Crystallization    | 244 |
| 7.3.8 Efflorescence, Hygroscopy and |     |
| Deliquescence                       | 244 |
| Questions for Practice              | 248 |
| Project Work                        |     |
|                                     |     |

# CHAPTER 8 CHEMICAL EQUILIBRIUM

| 8.1 | Reversible and Irreversible Reactions     | 255 |
|-----|-------------------------------------------|-----|
| 8.2 | State of Equilibrium                      | 255 |
| 8.3 | Equilibrium Involving Physical Changes    | 256 |
| 8.4 | Dynamic Nature of Equilibrium             | 257 |
| 8.5 | Characteristics of a Chemical Equilibrium | 258 |
| 8.6 | Types of Equilibrium                      | 259 |
| 8.7 | Active Mass and Molarity                  | 260 |

| 8.8   | Law of Mass Action                       | 260 |
|-------|------------------------------------------|-----|
| 8.9   | Expressions for Equilibrium Constant for |     |
|       | Some Reactions                           | 262 |
| 8.10  | Relationship between Kp and Kc           | 264 |
| 8.11  | Le Chatelier's Principle                 | 266 |
| Que   | stions for Practice                      | 274 |
| Proje | ect Work                                 | 278 |
|       |                                          |     |

# **INORGANIC CHEMISTRY**

# CHAPTER 9 CHEMISTRY OF NON-METALS

| 9.1 | Hydrogen                                    | 280 |
|-----|---------------------------------------------|-----|
|     | 9.1.1 Introduction                          | 280 |
|     | 9.1.2 Position of Hydrogen in the           |     |
|     | Periodic Table                              | 280 |
|     | 9.1.3 Types of Hydrogen                     | 281 |
|     | 9.1.4 Isotopes of Hydrogen                  | 283 |
|     | 9.1.5 Heavy Water                           | 284 |
| 9.2 | Oxygen                                      | 285 |
|     | 9.2.1 Periodic Position                     | 286 |
|     | 9.2.2 Medical and Industrial Application of | of  |
|     | Oxygen                                      | 286 |
|     | 9.2.3 Oxides                                | 287 |
|     | 9.2.4 Application of Hydrogen Peroxide      | 288 |
| 9.3 | Ozone                                       | 289 |
|     | 9.3.1 Introduction                          | 289 |
|     | 9.3.2 Occurrence of Ozone                   | 289 |
|     | 9.3.3 Preparation of Ozone                  | 289 |
|     | 9.3.4 Properties of Ozone                   | 290 |
|     | 9.3.5 Test for Ozone                        | 290 |
|     | 9.3.6 Depletion of Ozone Layer              | 290 |
|     | 9.3.7 Uses of Ozone                         | 291 |
|     | 9.3.8 Structure of Ozone                    | 292 |
| Que | stions for Practice 9.1                     | 292 |
| 9.4 | Nitrogen                                    | 295 |
|     | 9.4.1 Stability of Nitrogen Molecule        | 295 |
|     | 9.4.2 Position in Periodic Table            | 295 |

|     | 9.4.3 Properties of Ammonia                          | 296 |
|-----|------------------------------------------------------|-----|
|     | 9.4.4 Uses of Ammonia                                | 299 |
|     | 9.4.5Harmful Effect of Ammonia                       | 299 |
|     | 9.4.6 Properties of Nitric Acid                      | 299 |
|     | 9.4.7 Uses of Nitric Acid                            | 304 |
|     | 9.4.8 Test for Nitric Acid & Nitrates<br>(Ring Test) | 305 |
| Que | estions for Practice 9.2                             | 306 |
| 9.5 | Halogens                                             | 308 |
|     | 9.5.1 Periodic Position                              | 308 |
|     | 9.5.2 General Characteristics of                     |     |
|     | the Family                                           | 308 |
|     | 9.5.3 Occurrence of Halogens                         | 310 |
|     | 9.5.4 Preparation of Halogens                        | 310 |
|     | 9.5.5 Properties of Halogens                         | 314 |
|     | 9.5.6 Test for Halogens                              | 318 |
|     | 9.5.7 Uses of Halogens                               | 319 |
|     | 9.5.8 Halogen Acids                                  | 319 |
| Que | estions for Practice 9.3                             | 329 |
| 9.6 | Carbon                                               | 332 |
|     | 9.6.1 Periodic Position                              | 332 |
|     | 9.6.2 Allotropes of Carbon                           | 332 |
|     | 9.6.3 Oxides of Carbon                               | 336 |
| 9.7 | Phosphorus                                           | 339 |
|     | 9.7.1 Periodic Position                              | 339 |
|     | 9.7.2 Occurrence of Phosphorus                       | 339 |
|     |                                                      |     |

|                            | 9.7.3 Allotropes of Phosphorus                | 339 |
|----------------------------|-----------------------------------------------|-----|
|                            | 9.7.4 Phosphine (PH <sub>3</sub> )            | 339 |
| Questions for Practice 9.4 |                                               | 342 |
| 9.8                        | Sulphur                                       | 346 |
|                            | 9.8.1 Position in the Periodic Table          | 346 |
|                            | 9.8.2 Comparison of Oxygen and Sulphur        | 346 |
|                            | 9.8.3 Structure of Sulphur ( $S_8$ ) Molecule | 346 |
|                            | 9.8.4 Uses of Sulphur                         | 346 |
|                            |                                               |     |

| 9.8.5 Allotropes of Sulphur                            | 347 |
|--------------------------------------------------------|-----|
| 9.8.6 Hydrogen Sulphide (H <sub>2</sub> S)             | 349 |
| 9.8.7 Sulphur Dioxide (SO <sub>2</sub> )               | 354 |
| 9.8.8 Sulphuric Acid (H <sub>2</sub> SO <sub>4</sub> ) | 359 |
| 9.8.9 Sodium Thiosulphate or Hypo                      |     |
| $(Na_2S_2O_3)$                                         | 364 |
| Questions for Practice 9.5                             | 367 |
| Project Work                                           | 369 |
|                                                        |     |

# CHAPTER 10 CHEMISTRY OF METALS

| 10.1 Metals and Metallurgical Principles |     |
|------------------------------------------|-----|
| 10.1.1 Distinction between Metals and    |     |
| Non-metals                               | 371 |
| 10.1.2 Metalloids                        | 372 |
| 10.1.3 Alloys and Amalgams               | 372 |
| 10.1.4 Abundance of Elements             | 373 |
| 10.1.5 Occurrence of Metals              | 373 |
| 10.1.6 Occurrence of Metals in Nepal     | 374 |
| 10.1.7 Minerals and Ores                 | 376 |
| 10.1.8 General Metallurgical Operations  | 376 |
| Questions for Practice 10.1              | 390 |
| 10.2 Alkali Metals                       | 393 |
| 10.2.1 General Characteristics of Alkali |     |
| Metals                                   | 393 |
| 10.2.2 Occurrence of Sodium and          |     |
| Potassium                                | 396 |

| 10.2.3 Extraction of Sodium                           | 396 |
|-------------------------------------------------------|-----|
| 10.2.4 Uses of Sodium and Potassium                   | 398 |
| Questions for Practice 10.2                           | 404 |
| 10.3 Alkaline Earth Metals                            | 406 |
| 10.3.1 Periodic Position                              | 406 |
| 10.3.2 General Properties of Alkaline<br>Earth Metals | 406 |
| 10.3.3 Some Compounds of Magnesium and Calcium        | 407 |
| 10.3.4 Solubility of Compounds of Alkalin             | e   |
| Earth Metals                                          | 415 |
| 10.3.5 Stability of Compounds of Alkaline             |     |
| Earth Metals                                          | 416 |
| Questions for Practice 10.3                           | 417 |
| Project Work                                          | 418 |
|                                                       |     |

# CHAPTER 11 BIO-INORGANIC CHEMISTRY

| 11.1 Introduction                           | 420 | 11.4 Ion Pumps         | 423 |
|---------------------------------------------|-----|------------------------|-----|
| 11.2 Macro and Micronutrients               | 421 | 11.5 Metal Toxicity    | 425 |
| 11.3 Importance of Metal ions in Biological |     | Questions for Practice | 428 |
| System                                      | 422 | Project Work           | 428 |

# **INORGANIC CHEMISTRY**

# CHAPTER 12 BASIC CONCEPT OF ORGANIC CHEMISTRY

| 12.1 | Introduction                                        | 430 |
|------|-----------------------------------------------------|-----|
| 12.2 | Origin of Organic Compounds<br>(Vital Force Theory) | 430 |
| 12.3 | Modern Concept of Organic Compounds                 | 430 |
| 12.4 | General Properties of Organic                       |     |
|      | Compounds                                           | 431 |
| 12.5 | Sources of Organic Compounds                        | 433 |

| 12.6 Importance of Organic Chemistry        | 433 |
|---------------------------------------------|-----|
| 12.7 Classification of Organic Compounds    | 434 |
| 12.8 Functional Group and Homologous Series | 436 |
| 12.9 Idea of Different Types of Formula     | 439 |
| 12.10 Sources of Hydrocarbons               | 441 |
| Questions for Practice                      | 448 |
| Project Work                                | 450 |

### CHAPTER 13 FUNDAMENTAL PRINCIPLES OF ORGANIC CHEMISTRY

| 13.1 Nomenclature of Organic Compounds | 452 | Breakage of a Covalent Bond     | 485 |
|----------------------------------------|-----|---------------------------------|-----|
| 13.2 Qualitative Analysis of Organic   |     | Electrophiles and Nucleophiles  | 486 |
| Compounds                              | 474 | Electronic Effects              | 487 |
| 13.3 Isomerism in Organic Compounds    | 478 | Electromeric Effect             | 488 |
| Types of Isomerism                     | 478 | Resonance (Mesomeric Effect)    | 488 |
| 13.4 Stereoisomerism                   | 482 | 13.6 Types of Organic Reactions | 489 |
| Types of Stereoisomerism               | 482 | Questions for Practice          | 491 |
| 13.5 Preliminary Concept of Reaction   |     | Project Work                    | 494 |
| Mechanism                              | 484 | ,                               |     |

# **CHAPTER 14 HYDROCARBONS**

| 14.1 Introduction                              | 496 | 14.8 Properties of Alkenes           | 515 |
|------------------------------------------------|-----|--------------------------------------|-----|
| 14.2 Nomenclature, Structure and               |     | 14.9 Uses of Alkenes                 | 521 |
| Isomerism of Alkanes                           | 496 | 14.10 Alkynes                        | 522 |
| 14.3 General Methods of Preparation of Alkanes |     | 14.11 General Methods of Preparation |     |
| 499                                            |     | of Alkynes                           | 524 |
| 14.4 Properties of Alkanes                     | 503 | 14.12 Properties of Alkynes          | 526 |
| 14.5 Uses of Alkanes                           | 508 | 14.13 Uses of Ethyne                 | 530 |
| 14.6 Alkenes                                   | 509 | 14.14 Unsaturation Test Hydrocarbon  | 531 |
| 14.7 General Methods of Preparation            |     | Question for Practice                | 532 |
| of Alkenes                                     | 512 | Project Work                         | 534 |



# CHAPTER 15 AROMATIC HYDROCARBONS

| 15.1 Introduction                     | 536 | 15.5 Aromatic Disubstitution           | 541 |
|---------------------------------------|-----|----------------------------------------|-----|
| 15.2 Structure of Benzene             | 536 | 15.6 Methods of Preparation of Benzene | 543 |
| 15.3 Aromaticity (Aromatic Character) | 538 | Question for Practice                  | 548 |
| 15.4 Isomerism in Arenes              | 541 | Project Work                           | 550 |
|                                       |     |                                        |     |

# **APPLIED CHEMISTRY**

### **CHAPTER 16** FUNDAMENTALS OF APPLIED CHEMISTRY

| 16.1 Chemical Industry and its Importance |
|-------------------------------------------|
| 16.2 Stages in Producing a New Product    |
| 16.3 Economics of Production              |
| 16.4 Cash Flow in Production Cycle        |
| 16.5 Running a Chemical Plant             |

| 16.6 Designing a Chemical Plant       | 558 |
|---------------------------------------|-----|
| 16.7 Environmental Impact of Chemical |     |
| Industry                              | 560 |
| Question for Practice                 | 561 |
| Project Work                          | 562 |

# CHAPTER 17 MODERN CHEMICAL MANUFACTURES

| 17.1 Manufacture of Ammonia by     |     |
|------------------------------------|-----|
| Haber's Process                    | 564 |
| 17.2 Manufacture of Nitric Acid    | 565 |
| 17.3 Manufacture of Sulphuric Acid |     |
| by Contact Process                 | 567 |

| 17.4 Manufacture of NaOH (Diaphragm Cell) | 570 |
|-------------------------------------------|-----|
| 17.5 Manufacture of Sodium Carbonate      | 571 |
| 17.6 Fertilizers                          | 573 |
| Question for Practice                     | 577 |
| Project Work                              | 578 |